Roll No	Roll No.	•••••
---------	----------	-------

ED-2763

B. A./B. Sc./B. Sc. B. Ed. (Part III) EXAMINATION, 2021

MATHEMATICS

(Optional)

Paper Third (D)

(Programming in C and Numerical Analysis)

Time: Three Hours

Maximum Marks: 30

Note : Attempt any *two* part from each Unit. Each part carries equal marks.

Unit—I

- 1. (a) Write any 12 preprocessors.
 - (b) Write a program for books using structure.
 - (c) Explain file formatting and write a program for file formatting.

Unit—II

2. (a) By using Newton-method find a root of the following equation:

$$x^3 - 2x - 5 = 0$$

upto three places of decimals.

(b) By using following table find the value of $\log_{10} 301$ by Lagrange's interpolation formula:

x	$\log_{10} x$
300	2.4771
304	2.4829
305	2.4843
307	2.4871

(c) Find the first and second derivatives of the function tabulated given as follows at the point x = 3.0:

x	f x
3.0	- 14.000
3.2	- 10.032
3.4	- 5.296
3.6	0.256
3.8	6.672
4.0	14.000

Unit—III

3. (a) Solve the following equations by Relaxation method:

$$9x - 2y + z = 50$$
$$x + 5y - 3z = 18$$
$$-2x + 2y + 72 = 19$$

(b) Solve the following equation by Gauss's Elimination method:

$$5x - y - 2z = 142$$

 $x - 3y - z = -30$
 $2x - y - 3z = -5$

(c) Explain Given's method.

Unit-IV

- 4. (a) Given that $\frac{dy}{dx} = \frac{y-x}{y+x}$ with the initial conditional y = 1 at x = 0. Find the value of y for y = 0.1 by Euler's method.
 - (b) By using Runge's method to approximate y at x = 1.6 when y = 0.4 at x = 1.

where
$$\frac{dy}{dx} = x - y$$

(c) Solve the following equation:

$$y'' + y + 1 = 0$$

where boundary condition are as follows:

$$y = 0$$
 when $x = 0$ and $y = 0$ when $x = 1$.

Unit-V

- 5. (a) Explain random numbers through Monte Carlo method.
 - (b) Explain normal variates through Monte Carlo method.
 - (c) Explain improper integrals with the reference of Monte Carlo integration.